
User Behavior Enriched Temporal Knowledge Graphs for
Sequential Recommendation

Hengchang Hu∗
hengchang.hu@u.nus.edu

National University of Singapore
Singapore

Wei Guo
guowei67@huawei.com
Huawei Noah’s Ark Lab

Singapore

Xu Liu
liuxu@comp.nus.edu.sg

National University of Singapore
Singapore

Yong Liu
liu.yong6@huawei.com
Huawei Noah’s Ark Lab

Singapore

Ruiming Tang
tangruiming@huawei.com
Huawei Noah’s Ark Lab

China

Rui Zhang†
rayteam@yeah.net

ruizhang.info
China

Min-Yen Kan†
kanmy@comp.nus.edu.sg

National University of Singapore
Singapore

ABSTRACT
Knowledge Graphs (KGs) enhance recommendations by provid-
ing external connectivity between items. However, there is limited
research on distilling relevant knowledge in sequential recommen-
dation, where item connections can change over time. To address
this, we introduce the Temporal Knowledge Graph (TKG), which in-
corporates such dynamic features of user behaviors into the original
KG while emphasizing sequential relationships. The TKG captures
both patterns of entity dynamics (nodes) and structural dynamics
(edges). Considering real-world applications with large-scale and
rapidly evolving user behavior patterns, we propose an efficient two-
phase framework called TKG-SRec, which strengthens Sequential
Rec-ommendation with Temporal KGs. In the first phase, we learn
dynamic entity embeddings using our novel Knowledge Evolution
Network (KEN) that brings together pretrained static knowledge
with evolving temporal knowledge. In the second stage, down-
stream sequential recommender models utilize these time-specific
dynamic entity embeddings with compatible neural backbones like
GRUs, Transformers, and MLPs. From our extensive experiments
over four datasets, TKG-SRec outperforms the current state-of-the-
art by a statistically significant 5% on average. Detailed analysis
validates that such filtered temporal knowledge better adapts entity
embedding for sequential recommendation. In summary, TKG-SRec
provides an effective and efficient approach.

CCS CONCEPTS
• Information systems → Recommender systems.

∗Work done when the author is a research intern at Huawei Noah’s Ark Lab, Singapore.
†Min-Yen Kan and Rui Zhang are corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WSDM ’24, March 4th-8th, 2024, Mérida, Yucatán, Mexico
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0371-3/24/03.
https://doi.org/10.1145/3616855.3635762

KEYWORDS
Sequential Recommendation, Knowledge Graph

ACM Reference Format:
Hengchang Hu, Wei Guo, Xu Liu, Yong Liu, Ruiming Tang, Rui Zhang,
and Min-Yen Kan. 2024. User Behavior Enriched Temporal Knowledge
Graphs for Sequential Recommendation. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining (WSDM ’24), March
4–8, 2024, Merida, Mexico. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3616855.3635762

1 INTRODUCTION
Sequential Recommendation (SR) models how user preferences
change across temporally-ordered item sequences, evolving from
the use of Markov Chains [9] and Recurrent Neural Networks [8,
13, 21], to Transformers [18, 34, 46]. In SR tasks, knowledge graphs
(KGs) serve as valuable auxiliary resources, providing additional
information about items through external relationships to enhance
recommendation accuracy and diversity [61]. However, KGs contain
massive irrelevant knowledge (both entities and relationships) for
specific recommendation tasks, weakening performance.

Distilling relevant knowledge is necessary [6, 49], and existing
methods fall into two categories: item-centric and user-centric.
Item-centric methods disregard the role of users in knowledge fil-
tering and focus only on the filtering by item relationships; e.g.,
RippleNet [41] and KGAT [49]. In contrast, user-centric methods
select adjacent entities favoring user-specific preferences, as demon-
strated in KGNN-LS [43], CKAN [50], KGCN [45]. However, either
item-centric or user-centric methods pose limitations for SR.

(1) The item-centric approach considers only those KG entities
statically linked to an item as relevant ones [17], overlooking enti-
ties derived from sequential user behaviors. However, sequential rel-
evance is a strong signal in SR tasks. For example in Figure 1, while
Apple Watch and iPhone are closely connected in the KG, item-
centric methods symmetrically treat them as relevant to each other.
However, user behavior often shows an asymmetric sequence, like
buying an iPhone before an Apple Watch. Ignoring this sequence

266

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3616855.3635762
https://doi.org/10.1145/3616855.3635762
https://doi.org/10.1145/3616855.3635762
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616855.3635762&domain=pdf&date_stamp=2024-03-04

Figure 1: A TKG exploits the dynamic relations among enti-
ties: (left) the co-purchase of iPhone and Apple Watch rises
in prominence over time; (right) resulting in the creation of
a new dependency between the two entities in the TKG.

can lead to irrelevant recommendations, as a user who first buys an
Apple Watch may not find an iPhone as immediately relevant. This
motivates the need for SR methods that account for asymmetric
sequential relationships in knowledge distillation.

(2) Existing user-centric methods rely on static user preferences
for identifying relevant entities [43]. However, This approach falls
short in SR contexts where user preferences evolve over time. Con-
sider the example (Figure 1, right) regarding the proposition of
“buying a digital watch after buying a mobile phone”: a mere 6% of
Apple Watches were sold for every iPhone sold in 2016, but this
figure rose markedly to 22% in 2020 [2] — clearly illustrating that
relationships among entities change over time. While both items
are connected in the original KG as they are supplied by Apple
(static knowledge), their connectivity varies (temporal knowledge).
In 2016, the connectivity between these two nodes is less relevant;
but for users in 2020, it becomes more relevant in identifying user
intentions. Hence, incorporating temporal knowledge is crucial for
capturing these evolving relationships.

To tackle the above issues, we propose a behavior-centric ap-
proach, which introduces time-aware statistics of all user behav-
iors into existing KG, improving relevant knowledge identification.
Specifically, we incorporate sequential relationships as constraints
and emphasize the temporal dynamics of nodes and edges, which
wax and wane in prominence. We term this time-aware behavior-
inclusive KG as a Temporal Knowledge Graph (TKG).

How to construct the TKG? In real-world applications, the con-
struction of temporal knowledge poses scalability issues when
tracking each user’s behavior at every timestamp. Including precise
timestamps leads to an untenable computational complexity, and
the distinct and varying levels of relevant knowledge across individ-
ual users make the creation of personalized TKGs cost-prohibitive.
In our work, rather than treating time as a continuous feature, we
break it down into discrete periods and monitor user behaviors dur-
ing time intervals. We regard the information of nodes and edges in
the original KG as static knowledge, and we use statistical features
of user behaviors in each time period to select relevant temporal
knowledge. As prior research [63] has affirmed that popularity
bias has a beneficial impact on improving overall recommendation
accuracy, we choose popularity as a statistical feature [14] — the
item popularity as the node’s feature, and the popular item–item
transitions as the dynamic relations. Correspondingly, these two
types of temporal knowledge capture the dynamicity exhibited in
either its entities (i.e., nodes) or structure (i.e., edges).

How to model the TKG? Existing TKGs modeling methods pri-
marily operate on small datasets [4], making it inapplicable in

real-world recommendation scenarios, which must deal with large
volumes of data. Additionally, they often neglect the evolving na-
ture of real-world knowledge graphs [4], which continually adapt
to reflect changing user–item interactions. In our work, given the
graphical nature of KGs, using a graph neural network to model
them is a natural strategy [62]. Considering the vast scale of our
TKG (containing millions of relations), it is not feasible to train
it all at once. Therefore, we adopt pre-training, disentangling the
modeling of static knowledge and temporal knowledge, processing
them separately using distinct GCNs. Specifically, we employ a
large pre-trained model to capture static knowledge, while smaller
specialized models capture temporal knowledge within their respec-
tive time frames (here, the terms small and large are indicative of
the volume of processed knowledge). And as real-world knowledge
is continuously updated, we utilize selection gates to effectively
merge temporal knowledge from different views into the static en-
tity representation in an iterative fashion. We store the embeddings
of each entity at every time point, allowing for rapid iteration and
training in realistic scenarios that demand efficiency.

We refer to our aforementioned TKGmodeling method as Knowl-
edge Evolution Network (KEN). It acts as an effective technique
to distill relevant information given static/temporal knowledge
from each time frame, providing better support for downstream
SR tasks. We call our framework of TKG construction, TKG model-
ing, and downstream sequential modeling as Temporal Knowledge
Graph enhanced Sequential Recommender (TKG-SRec). Extensive
experimental results demonstrate that TKG-SRec establishes a new
state-of-the-art for SR. Through a detailed study of our dynamic
knowledge graph learning approach, we find that our modeling
of dynamic user behavior filters many irrelevant relations from
the knowledge graph. We also show that TKG-SRec is compatible
with various wide-adopted sequential modeling methods: SASRec
[18] and FMLP-Rec [66]. Such broad adaptivity lends additional
evidence that dynamic KG learning is a fruitful area for future work.

The main contributions of our work are summarized as follows:
(i) To the best of our knowledge, we are the first to explore the
temporal dynamicity of knowledge graphs in SR. We propose our
TKG-SRec framework that exploits temporal knowledge to improve
SR. (ii) We contribute KEN as the key component in our framework
which models the TKG in an efficient manner. (iii) We conduct
extensive experiments on four benchmark datasets, showing that
our TKG-SRec consistently outperforms state-of-the-art methods.
We validate the effectiveness of our KEN by integrating it with
GRU, MLP, and Transformer-based instantiations.

2 PROBLEM FORMULATION
The objective of sequential recommendation is to predict the next
consumed item 𝑖 ∈ I for each user 𝑢 ∈ U, given his/her history
sequence 𝑠𝑢 . The I andU are items set with volume 𝑁 and users
set with volume𝑀 . In a history sequence of length n, each element
is a combination of an interacted item and its corresponding inter-
action time at that moment, denoted as 𝑠𝑢 = (𝑖𝑢1 , 𝑡

𝑢
1), · · · , (𝑖

𝑢
𝑛 , 𝑡

𝑢
𝑛).

For brevity, the superscript 𝑢 will be dropped from the notation
in the following. In this work, we propose to enhance sequential
recommendation by further considering information from temporal
knowledge graph, which is denoted as G = (V,R, E, E𝜏 ,X𝜏). It

267

WSDM’24, March 4-8, 2024, Merida, Mexico Hengchang Hu et al.

User Behavior Enriched Temporal Knowledge Graphs for Sequential Recommendation WSDM ’24, March 4th-8th, 2024, Mérida, Yucatán, Mexico

links items directly or indirectly as an additional source of infor-
mation. The node setV encompasses not only the set of items I
(where each item can be viewed as a special type of entity 𝑖 ∈ V)
but also the set of non-item entities. More clearly, G comprises:

• Static knowledge. The intrinsic edges E between these entities,
known as static relations, are denoted by triple sets E : (𝑣𝑠 , 𝑟 , 𝑣𝑜).
Here, 𝑣𝑠 is the subject entity, 𝑣𝑜 is the object entity and 𝑟 ∈ R is
their relation. In our work, we preserve the original entity nodes
and their static relations (such as "A is the director of B") in the
knowledge graph as static knowledge.

• Temporal knowledge. There exist various temporal relations
between entities, which are represented as quadruple-sets edges
E𝜏 : (𝑣𝑠 , 𝑟𝜏 , 𝑡, 𝑣𝑜). Here, the variable 𝑡 denotes the index of the
time frame, and the granularity of these time frames is determined
based on the specific needs of the task. The notation 𝑟𝜏 ∈ R cor-
responds to a particular type of time-specific relation. Moreover,
we also consider the temporal properties of entity nodes, denoted
as X𝜏 : (𝑣, 𝑥, 𝑡), indicating 𝑣 holds property 𝑥 at time 𝑡 .

3 METHODOLOGY
Our methodology is founded on constructing temporal knowledge
from user behavior (§ 3.1). We then introduce the TKG-SRec frame-
work, which operates in two phases: entity embedding learning
on TKG (Phase-1, § 3.2 and § 3.3) and sequential modeling (Phase-
2, § 3.4). In Phase-1, entity embeddings are first pretrained using
static knowledge, followed by refinement with temporal knowl-
edge. Phase-2 involves using a sequential model to predict user
preferences with dynamic entity embeddings.

3.1 Temporal Knowledge Construction
For effective modeling of temporal knowledge, we divide it into
time-indexed snapshots (Figure 2) from two views. The two views
(series of snapshots) encapsulate time-specific entity properties and
temporal relations, modeled using statistical characteristics derived
from user-item behaviors within specific time windows. We only
use partitioned training records to construct TKGs, preventing data
leakage. Details of constructing the two views follow.

⋄ Entity-dynamic view. In this work, we treat popularity statis-
tics as properties for all entities, including items and non-items.
To factor in popularity’s temporal aspect, we introduce the entity-
dynamic view of the graph through a series of snapshots G𝑒𝑛𝑡 :
{G𝑒𝑛𝑡

1 , ...,G𝑒𝑛𝑡
𝑡 }. Each snapshot G𝑒𝑛𝑡

𝑡 captures entity properties
(𝑣, 𝑥, 𝑡 ′) at time 𝑡 ′ = 𝑡 . Here, 𝑥 signifies whether an entity is pop-
ular, determined by the top 𝜆 frequent item entities derived from
user–item interactions in each timeframe. The ratio 𝜆 distills popu-
lar items from the long-tail popularity distribution. For seamless
popularity propagation, in each snapshot, we include the 𝑘-hop
neighbors of popular entities, including non-item ones. For instance,
assuming the time interval is in a year, if the iPhone was popular in
2019, its 𝑘-hop entities (e.g., Apple Inc. for 𝑘 = 1) and their relation
(e.g., "is produced by") are recorded in G𝑒𝑛𝑡

2019, highlighting both item
and non-item entities that garnered user attention in 2019.

⋄ Structure-dynamic view. Leveraging existing designs [7, 53, 57],
we capture item-to-item transitions based on frequency, represent-
ing sequential dependencies within TKGs. These transitions lead

Figure 2: Temporal KGs construction from static knowledge
and temporal knowledge. The solid arrows indicate static
relations, and the dotted arrows indicate temporal relations.

to a series of snapshots, G𝑟𝑒𝑙 : {G𝑟𝑒𝑙
1 , ...,G𝑟𝑒𝑙

𝑡 }, documenting fine-
grained relations between item entities over time. Each snapshot
G𝑟𝑒𝑙 𝑡 depicts a directed mini graph with edges symbolizing interest
transition relations (𝑣𝑜 , 𝑟𝜏 , 𝑡, 𝑣𝑠). In these snapshots, item entities
can be either the source or the target of the transition relations.
Focusing on first-order transitions between adjacent items in user
sequences, denoted as 𝑟𝜏 , we include transition relations between
item pairs that exceed the frequency threshold 𝜇 within the 𝑡𝑡ℎ
timeframe. For example, if there is a frequent pattern of users fre-
quently buying AirPods right after (i.e., first-order) an iPhone in
2020, surpassing 𝜇 times, we include this directed link (iPhone, 𝑟𝜏 ,
2020, AirPods) in the snapshot G𝑟𝑒𝑙

2020.
In summary, for temporal knowledge modeling (as depicted in

Figure 2), we introduce time-aware properties of entities into G𝑒𝑛𝑡
𝑡

and a new type of relation 𝑟𝜏 (referred to as interest transition) into
G𝑟𝑒𝑙
𝑡 . These properties and relations are derived from user behavior

statistics within the time frame 𝑡 , serving as hard constraints for
distilling time-specific relevant knowledge. It’s worth noting that in
the previous examples, we used year as the time interval length (𝑡 −
1, 𝑡) for easier understanding. However, the time window length can
be dynamically set. As the time window expands, the granularity
of the partitioned snapshots becomes coarser. The total time span
and the number of time windows partitioned 𝑇 can vary.

3.2 Static Pretraining on TKG
The static knowledge denotes fixed relationships E between entities.
Given its high connectivity and computational demand in real
scenarios, we use a structurally simple graph encoder (i.e., static
encoder) for its modeling. This encoder takes 𝑑-dimensional entity
embeddings E𝜌 ∈ R𝑀×𝑑 (randomly initialized) as input, processing
them with a graph neural network. Designed for modeling varied
relations in knowledge graphs, its propagation function for each
entity node 𝑣 is as follows:

h(𝑙+1)𝑣 := 𝑅𝑒𝐿𝑈

(
Wselfh

(𝑙)
𝑣 +

∑︁𝑅

𝑟=1

∑︁
𝑣′∈N𝑟

𝑣

W𝑟h
(𝑙)
𝑣′

)
. (1)

Here, W𝑠𝑒𝑙 𝑓 ∈ R𝑑×𝑑 is a self-loop transformation matrix; W𝑟 ∈
R𝑑×𝑑 is the transformation matrix w.r.t. each type of relation 𝑟

linking central node 𝑣 and neighbor node 𝑣 ′; The nodes’ hidden
representation h(0)𝑣 := E𝜌𝑣 is initialized from the entity embedding
table. Through 𝐿-layer propagation from 𝑙 = 0 to 𝑙 = 𝐿, we take the
hidden state from the final layer as its encoded representation of
static knowledge, denoted as static hidden state h𝜌𝑣 = h(𝐿)𝑣 .

During the static pretraining, we apply the scoring function of
DistMult factorization [58] that decodes the hidden representation

268

Figure 3: The framework of Temporal Knowledge Graph enhanced Sequential Recommendation. KEN component (b) utilizing
(a) graph encoder to learn dynamic entity embeddings. Sequential recommender component (d) leverages dynamic entity
embedding into the traditional RNN-based backbone (c).

h𝜌𝑣 . It measures the existence of (𝑣𝑖 , 𝑟 , 𝑣 𝑗) by the score 𝑓 (𝑣𝑖 , 𝑟 , 𝑣 𝑗) :=
𝜎 ((h𝜌𝑣𝑖)

⊤R𝑟h
𝜌
𝑣𝑗), where R𝑟 ∈ R𝑑×𝑑 is a diagonal matrix to be

learned that bi-linearly interacts with the hidden vectors of en-
tities 𝑣𝑖 and 𝑣 𝑗 . For triple-lets (𝑣𝑖 , 𝑟 , 𝑣 𝑗) belonging to E, we label
them as positive samples with 𝑦 = 1. For each positive sample, we
follow previous practice [36], sampling the negative edges that do
not occur in R. Specifically, we randomly corrupt either the subject
or the object entity, marking it with the label 𝑦 = 0. The pretraining
objective is set as optimizing the cross-entropy loss:

L𝑝𝑟𝑒

𝑡𝑘𝑔
=

∑︁
(𝑣𝑖 ,𝑟 ,𝑣𝑗),𝑦

𝑦 log(𝑓 (𝑣𝑖 , 𝑟 , 𝑣 𝑗))+ (1−𝑦) log(1− 𝑓 (𝑣𝑖 , 𝑟 , 𝑣 𝑗)) (2)

3.3 Temporal Tuning on TKG
In addition to static knowledge, we leverage temporal fine-tuning
to integrate temporal knowledge. Following [52], we establish dy-
namic entity embeddings E𝜏 ∈ R𝑇×𝑀×𝑑 to effectively represent
entities/relations’ evolution, storing unique parameters for each
time. Each time’s entity embedding is initialized by static entity
embeddings E𝜏𝑡 = E𝜌 . As shown in Figure 3 (b), a temporal en-
coder processes the embedding E𝜏𝑡 at each time frame 𝑡 , yielding a
temporal hidden state. We use gated knowledge evolution units to
ensure dynamic continuity between temporal hidden states, while
the temporal decoder generates predictions for the next time frame
𝑡 + 1 based on temporal knowledge.

3.3.1 Temporal Encoder. Compared to static knowledge, tempo-
ral knowledge in each time frame is more streamlined, allowing for
detailed modeling in relation to the two dynamics. With the dual
perspectives of temporal knowledge, we introduce the temporal en-
coder to selectively propagate through them. Entities with popular
neighbors are likely to have popular traits; and transition relations
between entities foster new item connections. Both factors play a
crucial role in determining the probability of being relevant knowl-
edge for predicting user preferences. In G𝑒𝑛𝑡

𝑡 , popular property
perceptions are relayed via original relations, while G𝑟𝑒𝑙

𝑡 propa-
gates transition data using the new relation. Since their modeling
objectives differ, we employ differentiated aggregation for them.

Specifically, the propagation function for node 𝑣 at time 𝑡 is:

h(𝑙+1)
𝑣,𝑡 := 𝑅𝑅𝑒𝐿𝑈

(
Wselfh

(𝑙)
𝑣,𝑡 + 𝛼𝑣,𝑡 ∗

∑︁
𝑣′∈N𝑟𝜏

𝑣,𝑡

W𝑟𝜏 ,𝑡 (h(𝑙)
𝑣′,𝑡 + r𝜏)

+(1 − 𝛼𝑣,𝑡) ∗
∑︁𝑅

𝑟=1

∑︁
𝑣′∈N𝑟

𝑛,𝑡

W𝑟,𝑡h
(𝑙)
𝑣′,𝑡

) (3)

N𝑟
𝑣,𝑡 and N𝑟𝜏

𝑣,𝑡 denote object neighbors linked to node 𝑣 through
relations 𝑟 and 𝑟𝜏 in G𝑒𝑛𝑡

𝑡 and G𝑟𝑒𝑙
𝑡 , respectively. h𝑣′ + r𝜏 conveys

the translational relation [3] from neighbor 𝑣 ′ via edge 𝑟𝜏 . The
representation vector of 𝑟𝜏 is consistent across snapshots, which
mainly governs the effect of item transitions in entity temporal
fine-tuning. To sidestep the dying ReLU issue [24], we adopt RReLU
[55] as our activation function. The ∗ symbolizes the Hadamard
product, while 𝛼𝑣,𝑡 ∈ R1×𝑑 , a selection gate, regulates how node 𝑣
is influenced by the two views at time 𝑡 . It is further detailed as:

𝛼𝑣,𝑡 = 𝜎 (W𝑣𝑖𝑒𝑤 [𝑎𝑣𝑔(h𝑟
′
𝑣);𝑎𝑣𝑔(h𝑟𝑣)] + 𝑏𝑣𝑖𝑒𝑤), (4)

where W𝑣𝑖𝑒𝑤 ∈ R𝑑×2𝑑 is the gate weight vector of the selection
between two views, and 𝑏𝑣𝑖𝑒𝑤 is the bias. [;] is the concatenation
operation, and 𝑎𝑣𝑔(h∗𝑣) represents the normalized average hidden
vectors of 𝑣 ’s neighbors connected through relation 𝑟 or 𝑟𝜏 . Similar
to the static encoder, the temporal encoder outputs the temporal
hidden state h𝜏𝑣,𝑡 = h(𝐿

′)
𝑣,𝑡 after 𝐿′-layer propagation.

We separate the two views in the relation propagation in previous
designs, aiming to achieve better decoding effects, corresponding to
the entity classification and relationship prediction tasks respectively.

3.3.2 Gated Knowledge Evolution Unit. In order to leverage
the dynamic and static properties of each entity, we refer to the
static hidden state h𝜌𝑣 as the long-term constraints, and the temporal
hidden state h𝜏𝑣,𝑡 as the short-term information filters in our evolu-
tion units. Specifically, as illustrated in the green box in Figure 3
(b), in 𝑡𝑡ℎ unit cell, the update for each entity from h𝑣,𝑡−1 → h𝑣,𝑡 :

h𝑣,𝑡 = h𝜌𝑣 + (1 − 𝛽𝑡) ∗ h𝑣,𝑡−1 + 𝛽𝑡 ∗ h̃𝑣,𝑡 , (5)

𝛽𝑡 = 𝜎 (W𝑔𝑎𝑡𝑒 [h𝑣,𝑡−1; h𝜏𝑣,𝑡] + b𝑔𝑎𝑡𝑒), (6)

h̃𝑣,𝑡 = tanh(W𝑡𝑖𝑚𝑒 · (p𝑡 + h𝜏𝑣,𝑡)), (7)

269

WSDM’24, March 4-8, 2024, Merida, Mexico Hengchang Hu et al.

User Behavior Enriched Temporal Knowledge Graphs for Sequential Recommendation WSDM ’24, March 4th-8th, 2024, Mérida, Yucatán, Mexico

In Equation 5, the evolution representation vector h𝑣,𝑡 ∈ R𝑑 com-
bines three components: the static representation h𝜌𝑣 , the previous
time frame’s representation h𝑣,𝑡−1, and the current frame’s repre-
sentation h̃𝑣,𝑡 . The fusion vector 𝛽𝑡 ∈ R𝑑 integrates h𝑣,𝑡−1 and h̃𝑣,𝑡 ,
balancing long-term and short-term properties through element-
wise production ∗. The fusion vector is activated by the gate weight
matrixW𝑔𝑎𝑡𝑒 ∈ R𝑑×2𝑑 and bias term b𝑔𝑎𝑡𝑒 ∈ R𝑑 in equation 6. The
long-term static representation serves as a connection to maintain
awareness of the static knowledge within the evolution represen-
tation. The evolved representation h𝑣,0 initialized from the static
entity embedding table. The absolute time information 𝑡 is incorpo-
rated into temporal hidden states via time positional embedding
p𝑡 in Equation 7, which is initialized from a separate positional
embedding table, following the method outlined in [18].

The entity evolution representation is updated iteratively from
h𝑣,0 to h𝑣,𝑡 , and used for decoding and predicting the time-aware
properties in the snapshots G𝑒𝑛𝑡

𝑡+1 and G𝑟𝑒𝑙
𝑡+1, which is detailed next.

3.3.3 Temporal Decoder & Training Targets. We have two objec-
tives – entity classification and relation prediction – to guide the
training of the temporal knowledge evolution.

The entity classification task aims to classify the properties (i.e.,
the popularity) of entities in the next time frame G𝑒𝑛𝑡

𝑡+1 . To accom-
plish this, we utilize the evolved representation h𝑣,𝑡 from time 𝑡 = 0
to 𝑡 = 𝑡 in the gated knowledge evolution units, along with an
MLP decoderM for decoding. The probability of an entity being
popular at time 𝑡 + 1 is calculated as 𝑞(𝑣, 𝑡 + 1) = 𝜎 (M(h𝑣,𝑡)). For
training, we create positive-negative pairs where (𝑣+, 𝑥, 𝑡) ∈ X𝜏

represents positive entities 𝑣+ with the popularity property. We
also randomly sample negative entities 𝑣− to represent unpopular
ones for pairwise training. The entity classification objective is
optimized using the BPR loss [27]:

L𝐸𝑛𝑡
𝑡+1 =

∑︁
−log(𝑞(𝑣+, 𝑡 + 1)) − log(1 − 𝑞(𝑣−, 𝑡 + 1)) . (8)

The relation prediction task involves determining the existence
of an interest transition relation in G𝑟𝑒𝑙

𝑡+1. To address this, we use
ConvTransE [32] as our relation decoder C, following the common
practice of using graph decoders as score functions for relation
prediction. We decode using the evolved representations h𝑣,𝑡 . The
probability of a quadruple (𝑣𝑠 , 𝑟𝜏 , 𝑡 + 1, 𝑣𝑜) existing is calculated as
𝑔(𝑣𝑠 , 𝑟𝜏 , 𝑣𝑜 , 𝑡 + 1) = 𝜎 (r𝜏 · C(h𝑣𝑠 ,𝑡 , h𝑣𝑜 ,𝑡)), where r𝜏 represents the
edge embedding. For training, positive quadruples (𝑣𝑠 , 𝑟𝜏 , 𝑡, 𝑣𝑜) ∈
E𝜏 are extracted from the TKG, marked as label𝑦 = 1. And negative
quadruples (𝑣−𝑠 , 𝑟𝜏 , 𝑡, 𝑣𝑜), 𝑦 = 0 are sampled by replacing the subject
entity. The classification criterion is the Binary Cross-Entropy loss.

L𝑅𝑒𝑙
𝑡+1 =

∑︁
{ (𝑣𝑠 ,𝑟𝜏 ,𝑡+1,𝑣𝑜),𝑦}

𝑦 log(𝑔) + (1 − 𝑦) log(1 − 𝑔) . (9)

For better computational efficiency, we sample negative entities
from all graph nodes for the entity classification task; and sample
negative relations from the training batch (randomly choosing an
edge from the batch) for the relation prediction task. The final target
for the temporal tuning is defined as:

L𝑡𝑘𝑔 =
∑︁𝑇

𝑡=1
𝜑L𝑅𝑒𝑙

𝑡 + (1 − 𝜑)L𝐸𝑛𝑡
𝑡 , (10)

The loss weight 𝜑 serves as a hyperparameter balancing impacts
of both tasks. Through optimization, the learned entity embedding

e𝜏𝑣,𝑡 (from the temporal embedding table E𝜏) intrinsically captures
the distilled knowledge specific to a certain time.

3.4 Entity-level Sequential Modeling in SR
A typical sequential recommender model (SRec) focuses on item
sequential modeling, using history item representation for next-
item prediction. As shown in Figure 3.c, traditional SRec assigns
item representation by randomly initialized embedding. For a bet-
ter explanation, we employ GRU4Rec [13] as our backbone in
Phase-2, which is a straightforward yet powerful choice. Taking
the traditional method, given a user’s interaction sequence 𝑠1:𝑛 :
(𝑖1, 𝑡1) → · · · → (𝑖𝑛, 𝑡𝑛), GRU4Rec models it using GRU cells. At
the 𝑛𝑡ℎ position, the GRU cell processes the input of randomly ini-
tialized item embedding i𝑛 and the hidden state from the previous
GRU cell z𝑛−1, and then generate the hidden state for the next cell.
Mathematically, z𝑛 = 𝐺𝑅𝑈 (i𝑛, z𝑛−1). Beginning from 𝑛 = 1, the
sequence representation is obtained by propagating through 𝑛 cells.

By contrast, the learned dynamic entity embeddings from Phase-
1 can be regarded as leveraging distilled knowledge. The inclusion of
user behavior serves to assist the training of temporal knowledge,
enabling the hard constraints of more valuable information for
each time period (while disregarding irrelevant information). To
explore the efficacy of dynamic entity embeddings in enhancing
item representation, we model them with another GRU, as shown:

𝑧′𝑛 = 𝐺𝑅𝑈 (e𝜏𝑖𝑛,𝑡𝑛 , 𝑧
′
𝑛−1), (11)

where e𝜏
𝑖𝑛,𝑡𝑛

indicates the dynamic entity embedding of item 𝑖𝑛

at time 𝑡𝑛 . As shown in Figure 3.d, we leverage such entity-level
modeling into item-level modeling through a linear combination
layer B([𝑧𝑛 ; 𝑧′𝑛]). The final probability of recommending 𝑖𝑛+1 is

𝑦 (𝑖𝑛+1 |𝑠1:𝑛) = B([𝑧𝑛 ; 𝑧′𝑛])⊤ · [i𝑛+1; e𝜏𝑖𝑛+1,𝑡𝑛+1] (12)

In order to better adapt the entity embeddings to SR, we don’t
freeze the dynamic entity embeddings, allowing them to be further
fine-tuned. Finally, the ultimate objective is to minimize the loss
between the predicted value 𝑦 and the true label 𝑦.

3.5 Complexity Analysis
Time complexity. Our TKG-SRec is a streamlined two-phase frame-
work optimized for lightweight TKGs use. The enhanced entity
embedding is directly applicable for online inference, making its
time complexity equivalent to basic SR models. For training, the
two-phase approach simplifies integration with a lower complex-
ity 𝑂 (𝑆𝑁 + 𝐿 |E | + 𝑇 2𝐿′ |E𝜏 |), in contrast to the joint training’s
𝑂 (𝑆𝑁 (𝐿 |E | +𝑇 2𝐿′ |E𝜏 |)). Here, 𝑆 is the maximum sequence length,
𝑁 is the user number, |E | and |E𝜏 | are the average edge numbers
of static relations and temporal relations in each snapshot. Most
training time centers on the temporal knowledge evolution training
with 𝐿 |E | +𝑇 2𝐿′ |E𝜏 |. The parameter 𝑇 influences time granularity
and training complexity. Nonetheless, real-world TKGs’ vastness
necessitates a balance.

Space complexity. In Phase-1, training dynamic entity embed-
ding is memory-intensive for many GPUs. We address this using
memory-saving strategies. Both in static pretraining and temporal
tuning, we employ block-wise graph propagation, where neighbor
node messages are propagated within small batched sub-graphs
(known as blocks in DGL [47]. Thismethod cuts GPUmemory usage

270

from 𝑂 (𝑀2𝑑) to 𝑂 (20𝑚𝑑) during static pretraining, with𝑚 being
the average entity number in a batch and 20 is the default num-
ber of sampled neighbors for propagation. For temporal tuning’s
sub-graph sampling, nodes are selected from temporal snapshots
G𝑒𝑛𝑡
𝑡+1 and G𝑟𝑒𝑙

𝑡+1 rather than the full knowledge graph. This reduces
space complexity from 𝑂 (𝑇𝑀2𝑑) to 𝑂 (∑𝑇

𝑗=1𝑀𝑡+1𝑀𝑗𝑑), where𝑀𝑗

represents the number of entities in the 𝑗-th snapshot. The entity
count in each snapshot𝑀𝑗 , is generally much less than the overall
entity count𝑀 .

4 EXPERIMENTS
Datasets. We experiment on four public datasets including LastFM
[30], Amazon-books [12], and MovieLens [10] (with two volumes).
The datasets include both user–item interactions and side knowl-
edge. To avoid heavy computation, following the common prepro-
cessing practice [11, 17, 28, 39], we filter out the overly unpopular
items and inactive users with fewer than 5 records. The KGs are ini-
tially constructed by Zhao et al. [64], and we also eliminate entities
from KGs that are too distant (more than 3 hops) from any of the
item-linked entities. For the large LastFM, we follow the practice
of Huang et al. [17], only keeping the last year’s interaction.

Evaluation Protocol. Following standard SR settings [15, 18], we
allocate 85% of each user’s earlier interactions for training (which
also derives temporal knowledge construction in § 3.1) and the
remaining 15% for testing. Unlike typical methods that sample
negative items for evaluation [13, 18], our model treats all non-
selected items as negatives and pairs them with a single positive
item in each sample. Our evaluation employs ranking-basedmetrics:
Hit Ratio@k (HR@k), Normalized Discounted Cumulative Gain@k
(NDCG@k), and Mean Reciprocal Rank@k (MRR@k), where k is
the truncated length of recommendation list [33].

Baselines. To verify the effectiveness of our proposed TKG-SRec,
we compare it with two groups of models. (A) Sequential rec-
ommender baselines include Caser [35] using vertical and hor-
izontal CNNs to model short-term sequences (limited to the last
15 items to avoid gradient explosion); GRU4Rec [13], SASRec [18],
and BERT4Rec [34] utilizing GRU, Transformer, and BERT model
to capture sequential patterns in user interaction histories; FMLP
[66] employing MLPs instead of multi-head attention in the Trans-
former framework for improved filtering; CL4SRec [54] introducing
sequence-based contrastive learning with unsupervised techniques;
DuoRec [26] further advancing contrastive embedding training with
dropout masks and sample selection. (B) KG-based recommender
baselines include KGAT [49] capturing high-order item relation-
ships using attention to weigh entity neighbors; GRU4RK extending
GRU4Rec with dual GRUs for item and entity embeddings (which
is pretrained using TransE [3]); KSR [17] combining a GRU-based
system with knowledge-augmented memory networks.

4.1 Overall Recommendation accuracy
Table 1 shows results from various models across four datasets.
Our TKG-SRec outperforms other baselines, with relative improve-
ments in brackets. Overall, this suggests that our work successfully
distilled more useful dynamic knowledge for the SR task. Among
the runner-up baselines, SASRec and FMLP are notable as effective

models trained solely on interactions, emphasizing the power of
attention and filtering mechanisms in sequential modeling. Also,
DuoRec’s stellar performance on the LastFM dataset underscores
the benefits of unsupervised augmentation for recommendation.

When compared to the standard SR models, the models that
incorporates additional information from KGs exhibits improved
accuracy. This is evident from the relatively better performance of
GRU4RK and KSR on the MovieLens dataset. However, the margin
is not substantial, partly because the knowledge graphs are not
specifically designed for recommendation tasks. At times, the KGs
even introduce noise which can harm recommendation accuracy,
as seen when FMLP outperforms them without KG information
on the ML and Amazon datasets. KGAT, while not specifically
designed for the SR task and focusing only on collaborative signals,
still shows comparable performance against other SR models. It
further emphasizes the importance of distilling useful knowledge
for improving more accurate recommendations.

Interestingly, we observed that the impact of TKG-SRec’s im-
provement is less pronounced on the ML-1M dataset compared to
other datasets. This is attributed to the smaller ratio of temporal
relations (|E𝜏 |) to static relations (|E |), with ML-1M having a ratio
of 0.6M/4M, whereas datasets like Amazon-Books have a ratio of
0.4M/1M. Consequently, less information is derived from temporal
properties and more from static ones.

4.2 Ablation Study
In this section, we conduct a series of experiments to better under-
stand the design rationality of our proposed framework.

4.2.1 On the superiority of KG modeling. In Table 2 (left column),
we measure the merits of various KG modeling methods – we
contrast our static encoder (referred to as S.K.) with other commonly
utilized KG embedding learning techniques – TransE and RESCAL.
It’s evident that our static encoder surpasses TransE and RESCAL
across all four datasets, illustrating the efficacy of convolution
in graph learning and the dependability of our pre-trained entity
embeddings. Furthermore, we observe that relying solely on static
knowledge results in a significant decrease in performance, which
further confirms that knowledge distillation based solely on existing
information is challenging to effectively apply in sequential tasks.

4.2.2 On the effect of TKG construction. In Table 2, we further ana-
lyze the impact of constructing each type of temporal knowledge
separately: structure dynamics (T.K.𝑟𝑒𝑙) or entity dynamics (T.K.𝑒𝑛𝑡).
Specifically, the temporal encoders propagate messages in the graph
snapshot G𝑟𝑒𝑙 or G𝑒𝑛𝑡 and supervise the fine-tuning with relation
prediction loss or entity classification loss. We observe that solely
considering structure dynamics leads to a larger improvement over
the base static encoder (↑8.2%) compared to utilizing entity dy-
namics (↑3.2%). The exception is the ML-1M dataset, where static
information has a greater impact. As highlighted earlier, the sparse
temporal knowledge in ML-1M could diminish its impact. Focusing
only on a single type of temporal knowledge might further disrupt
precise static modeling and obstruct effective knowledge distillation.
Additionally, to verify the benefits of the evolution units, we replace
themwith a simple integration (h𝑡 = h𝑆 +h𝑇𝑡) in equation 5 (marked
as w/o EU). We observe that the simple integration significantly

271

WSDM’24, March 4-8, 2024, Merida, Mexico Hengchang Hu et al.

User Behavior Enriched Temporal Knowledge Graphs for Sequential Recommendation WSDM ’24, March 4th-8th, 2024, Mérida, Yucatán, Mexico

Metric Caser GRU4Rec SASRec BERT4Rec FMLP CL4SRec DuoRec KGAT GRU4RK KSR TKG-SRec

M
L-
10

0K HR@5 0.0469 0.0689 0.0710 0.0551 0.0764 0.0551 0.0615 0.0718 0.0753 0.0700 0.0815† (+6.5%)
HR@10 0.0981 0.1368 0.1485 0.1209 0.1389 0.0870 0.123 0.1283 0.1357 0.1262 0.1516† (+2.0%)
NDCG@5 0.0285 0.0422 0.0446 0.0320 0.0481 0.0236 0.0383 0.0433 0.0491 0.0463 0.0531† (+8.1%)
NDCG@10 0.0449 0.0642 0.0692 0.0532 0.0683 0.0392 0.0579 0.0615 0.0685 0.0644 0.0734† (+7.1%)

M
L-
1M

HR@5 0.1375 0.1998 0.2025 0.1207 0.2010 0.0983 0.168 0.0801 0.2070 0.2005 0.2137† (+3.2%)
HR@10 0.2178 0.2659 0.2863 0.1955 0.2854 0.1558 0.2526 0.1175 0.2874 0.2805 0.2987† (+3.8%)
NDCG@5 0.0898 0.1289 0.1391 0.0912 0.1385 0.0687 0.1081 0.0570 0.1396 0.1399 0.1464† (+4.6%)
NDCG@10 0.1156 0.1537 0.1663 0.1153 0.1657 0.0872 0.1354 0.0689 0.1656 0.1657 0.1719† (+3.7%)

A
m
az
on HR@5 0.0260 0.0362 0.0441 0.0360 0.0457 0.0215 0.0376 0.0208 0.0390 0.0331 0.0489† (+7.0%)

HR@10 0.0389 0.0541 0.0622 0.0557 0.0651 0.035 0.0564 0.0368 0.0533 0.043 0.0694† (+6.6%)
NDCG@5 0.0180 0.0241 0.0309 0.0257 0.0287 0.0135 0.0235 0.0130 0.0280 0.0249 0.0308† (+7.3%)
NDCG@10 0.0239 0.0299 0.0367 0.0322 0.0373 0.0178 0.0295 0.0182 0.0326 0.0281 0.0399† (+6.9%)

La
st
FM

HR@5 0.0686 0.0575 0.0582 0.0611 0.0603 0.0457 0.0709 0.0591 0.0607 0.0604 0.0748† (+5.5%)
HR@10 0.1175 0.0993 0.1048 0.0944 0.1041 0.0802 0.1176 0.1021 0.1007 0.0878 0.1143† (+2.8%)
NDCG@5 0.0424 0.035 0.0355 0.0333 0.0358 0.0280 0.0429 0.0322 0.0380 0.0415 0.0459† (+6.9%)
NDCG@10 0.0581 0.0483 0.0503 0.0458 0.0508 0.0391 0.0579 0.0490 0.0509 0.0504 0.0617† (+5.0%)

Table 1: Overall Performance. Bold text indicates best performance, underlined text indicates second best. † indicates a
statistically significant level 𝑝-value< 0.05 comparing TKG-SRec with the best baseline

TransE RESCAL S.K. T.K.𝑟𝑒𝑙 T.K.𝑒𝑛𝑡 w/o EU KEN

M
L-
H
K H 0.0651 0.0630 0.0681 0.0758 0.0755 0.0700 0.0813

N 0.0392 0.0388 0.0409 0.0458 0.0412 0.0453 0.0539
M 0.0282 0.0283 0.0292 0.0361 0.0298 0.0373 0.0476

M
L-
1M

H 0.1336 0.1324 0.2053 0.1997 0.1764 0.1614 0.2139
N 0.0880 0.0902 0.1416 0.1394 0.1134 0.1068 0.1466
M 0.0730 0.0763 0.1206 0.0941 0.0877 0.0890 0.1083

A
m
az
. H 0.0289 0.0302 0.0351 0.0402 0.0369 0.0351 0.0489

N 0.0199 0.0211 0.0251 0.0307 0.0273 0.0268 0.0316
M 0.0170 0.0181 0.0218 0.0221 0.0204 0.0205 0.0227

LF
M H 0.0547 0.0571 0.0586 0.0644 0.0651 0.0632 0.0798

N 0.0353 0.0349 0.0356 0.0429 0.0401 0.0411 0.0499
M 0.0290 0.0276 0.0282 0.0301 0.0314 0.0310 0.0370

Table 2: The ablation study results are presented withmetrics
(HR, NDCG, MRR)@5. ML-HK and Amaz. stand for ML-100K
and Amazon-Books. The left column shows models using
only static knowledge, while the middle column shows re-
sults with added temporal knowledge.

Model Backbone +TKG
& Data HR NDCG MRR HR NDCG MRR

G
R
U ML-HK 0.0689 0.0422 0.0335 0.0753 0.0458 0.0361

ML-1M 0.1472 0.1003 0.0922 0.2070 0.1396 0.1282
Amaz. 0.0362 0.0241 0.0202 0.0489 0.0396 0.0377

SA
SR

e c ML-HK 0.0573 0.0352 0.0279 0.0619 0.0377 0.0297
ML-1M 0.1576 0.1006 0.0925 0.2188 0.1422 0.1318
Amaz. 0.0441 0.0309 0.0297 0.0459 0.0312 0.0303

FM
LP ML-HK 0.0764 0.0481 0.0346 0.0668 0.0408 0.0324

ML-1M 0.2010 0.1385 0.1163 0.2013 0.1376 0.1179
Amaz. 0.0457 0.0287 0.0219 0.0463 0.0286 0.0223

Table 3: Backbone compatibility analysis over four sequential
datasets, evaluated with (HR, NDCG, MRR)@5.

underperforms KEN, confirming that taking static knowledge as
soft constraints is a better approach to pretrain entity embeddings.
4.2.3 On the compatibility of sequential modeling methods. To as-
sess the general applicability of TKG-SRec, we employ pretrained
TKG embeddings with various backbones and compare them to

KEN

Figure 4: The correlation between entities’ embedding relat-
edness and their order distances in interaction sequences.

the original approach. We adapted SASRec and FMLP following
the approach outlined in Section 3.4, incorporating entity-level
embeddings into Transformer and MLP-based encoding layers, and
combining these with item-level outcomes for final predictions.
Both models integrate dynamic entity and positional embeddings.

From the results in Table 3, we observe that the GRU variant
benefits the most from dynamic entity embedding, consistently
delivering substantial improvements. SASRec also demonstrates
improvement with fine-grained entity embeddings. However, it
appears that the TKG’s contribution to enhancing the FMLP is
relatively marginal, with its performance even slightly declining on
the ML-100K dataset. We interpret this as a result of our method’s
underlying principle as a noise filter and a remover of irrelevant
knowledge, similar to filter-based models that operate filtering at
the feature level. This characteristic leads to a modest enhancement
of the FMLP, particularly in smaller datasets like ML-100K, where
the limited size of the KG curtails the impact of knowledge filtering.

4.3 Effectiveness of Popularity-Based Statistics
In this study, popularity-based statistics are perceived as a means of
noise reduction, emphasizing behavior patterns with higher confi-
dence. In this section, we scrutinized the utility of using popularity
as a statistic feature in SR for knowledge distillation. We gauged

272

the relevance of the distilled knowledge from the KG by examin-
ing the relatedness of sampled item entity embeddings (Figure 4),
where the relatedness is measured using cosine similarity. Smaller
relatedness values indicate less relevance of the distilled knowledge
for the recommendation task. In SR, it is commonly agreed that
closer items in a sequence should have a stronger correlation, while
distant items tend to have weaker relevance. We then assessed if the
relatedness mirrored the average order distance in the interaction
sequence, thereby indicating their SR adaptability.

We observed that TransE and RGCN derived entity embeddings
failed to clearly correlate item order distance and embedding related-
ness, revealing a gap in KG and SR information and that traditional
approaches fail to distill relevant knowledge from TKG. Contrarily,
our KEN offers less related embeddings for distant sequence items.
With increasing KG size, the correlation between order distance
and embedding similarity strengthens, despite more fluctuations in
Amazon-Books. This underlines the difficulty of preserving KG’s
static structural information while distilling information to opti-
mize SR, especially for larger KGs with more complex structures.

4.4 Parameter Sensitivity
We first analyze the sensitivity of KEN to the number of GCN layers
in both static Knowledge Graph encoder 𝐿 and temporal Knowl-
edge Graph encoder 𝐿′. In the sensitivity test, we fix other hyper-
parameters but only vary the combination of 𝐿 and 𝐿′. As shown in
Table 4, we find that the model performs poorly when both 𝐿 and
𝐿′ are equal to 4. It is because a large number of graph convolution
layers would mix too many information from neighbors, which
would over-cover the origin entity properties. TKG-SRec achieves
the best performance when 𝐿 and 𝐿′ are 1 or 2 in the four datasets.

(𝐿, 𝐿′) (1, 1) (1, 2) (2, 1) (2, 2) (3, 3) (4, 4)
ML-100K 0.1082 0.1296 0.1433 0.1326 0.1029 0.1073
ML-1M 0.2041 0.2853 0.2764 0.2987 0.2650 0.1920

Amazon-B. 0.514 0.0694 0.0653 0.0647 0.0593 0.0588
LastFM 0.1014 0.1143 0.1078 0.1076 0.1012 0.1007
Table 4: R@10 w.r.t. the number of layers 𝐿 and 𝐿′.

We also investigate how the hidden size 𝑑 affects TKG-SRec
performance. As shown in Table 5, it might increase model capacity
with extra bits in hidden layers (where the performance improves
with a rise in 𝑑 at the beginning). However, when 𝑑 is further raised,
performance suffers as an overly large number of dimensions might
cause overfitting. The 𝑑 range of 32 to 64 yields the best results.

𝑑 8 16 32 64 128
ML-100K 0.0974 0.1156 0.1275 0.1516 0.1328
ML-1M 0.2188 0.2446 0.2543 0.2987 0.2914

Amazon-Books 0.0471 0.0668 0.0704 0.0697 0.0615
LastFM 0.0918 0.1104 0.1243 0.1237 0.1185

Table 5: R@10 w.r.t. the dimension of hidden layers 𝑑 .

5 RELATEDWORK
Knowledge Graph Completion is typically explored in static
KGs, and common methods include translational models like TransE
[3], TransH [51], and TransR [23], which aim to embed nodes and
relations using a scoring function; and propagation-based models
use graph neural networks like GCNs [31], RGCN [31].

Further considering Temporal Knowledge Graph Completion task
[4], various techniques exist for integrating timestamps into TKGs.
Tensor Decomposition [29] simplifies the complex 4-way tensor
(head, relation, timestamp, tail). Time Transformation [20] inter-
prets timestamps as transformations for entity and/or relation rep-
resentation using time-specific functions. Studies on Dynamic TKG
note that entity or relation representations evolve over time. Such
approaches include merging static information with trend and sea-
sonal data at specific times [56] and capturing relations of concur-
rent facts through KG subgraph snapshots [22]. However, according
to Cai et al. [4], current TKG completion methods falter with larger,
dynamic data. In our task of handling the application with dynamic
user-item interaction data, we need efficient methods to address
the ongoing changes in real-world knowledge graphs, discarding
irrelevant knowledge and incorporating new data.

KG-AugmentedRecommendation employs twomain approaches
to utilize KGs: two-phase learning and joint learning. The former
trains entity embedding before integrating it into the recommen-
dation [16, 17, 42, 59]. The latter trains both entity and user/item
embeddings together, either with a single [40, 61] or multiple objec-
tives [5, 44]. In addition, personalization in recommenders systems
is advanced by incorporating user behaviors into KGs. RippleNet
[41] uses a memory-network model for unique user operations,
and KGCN [45] employs user-specific weights. TPRec [65] further
integrates time-aware user-item graphs into KGs.

SR specifically targets modeling users’ sequential interests [15,
37, 60]. Enhancements in SR through KGs include KGIE [39] for
entity-level user interest modeling; KSR [17] which integrates entity
data withmemory networks in recommendation systems; and KERL
[48] that applies knowledge-guided reinforcement learning. MKM-
SR [25] combines KGs with item sequences and user actions, and
Chorus [38] uses KGs to link items in SR. However, time-aware
& dynamic KGs in SR remain unexplored. We propose to use the
temporal knowledge graph to have time-aware user behaviors in
KG modeling, filtering irrelevant knowledge out for SR.

6 CONCLUSION AND FUTUREWORK
In our study, we enhance KGs by tracking dynamic user behav-
iors to create Temporal Knowledge Graphs (TKGs). The introduced
temporal knowledge in TKGs focuses on two distinct facets: entity-
related and graph structure-related. Our novel KEN component fil-
ters information by leveraging both static and dynamic knowledge
over time, leading to the development of the TKG-SRec framework,
a novel approach for KG+SR. Our experiments show consistent
effectiveness across various datasets and three backbones.

For future work, beyond merely treating behavior statistics as
temporal knowledge, our framework can excel by additional factual
data like product release dates. TKG-SRec sets a new paradigm for
utilizing temporal knowledge in high-throughput recommendation
systems. Additionally, adopting more sophisticated time model-
ing methods, like Time2Vec [19] which captures periodicity, could
further refine and improve the system’s effectiveness.

ACKNOWLEDGMENTS
We thank the new deep learning computing framework Mind-
Spore [1] for the partial support of this work.

273

WSDM’24, March 4-8, 2024, Merida, Mexico Hengchang Hu et al.

User Behavior Enriched Temporal Knowledge Graphs for Sequential Recommendation WSDM ’24, March 4th-8th, 2024, Mérida, Yucatán, Mexico

REFERENCES
[1] 2020. MindSpore. https://www.mindspore.cn.
[2] 2023. Apple Statistics. https://www.businessofapps.com/data/apple-statistics/.
[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[4] Borui Cai, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li, and Jianxin Li. 2022.
Temporal knowledge graph completion: A survey. arXiv preprint arXiv:2201.08236
(2022).

[5] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019.
Unifying knowledge graph learning and recommendation: Towards a better
understanding of user preferences. In The world wide web conference. 151–161.

[6] Yankai Chen, Yaming Yang, Yujing Wang, Jing Bai, Xiangchen Song, and Irwin
King. 2022. Attentive knowledge-aware graph convolutional networks with
collaborative guidance for personalized recommendation. In 2022 IEEE 38th Inter-
national Conference on Data Engineering (ICDE). IEEE, 299–311.

[7] Yujuan Ding, Yunshan Ma, Wai Keung Wong, and Tat-Seng Chua. 2021. Lever-
aging Two Types of Global Graph for Sequential Fashion Recommendation. In
Proceedings of the 2021 International Conference on Multimedia Retrieval. 73–81.

[8] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential user-based
recurrent neural network recommendations. In Proceedings of the eleventh ACM
conference on recommender systems. 152–160.

[9] Florent Garcin, Christos Dimitrakakis, and Boi Faltings. 2013. Personalized news
recommendation with context trees. In Proceedings of the 7th ACM Conference on
Recommender Systems. 105–112.

[10] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[11] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In Proceedings of the eleventh ACM conference on recommender
systems. 161–169.

[12] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[13] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[14] Hengchang Hu, Yiming Cao, Zhankui He, Samson Tan, and Min-Yen Kan. 2023.
Automatic Feature Fairness in Recommendation via Adversaries. In Proceedings
of the 1st International ACM SIGIR Conference on Information Retrieval in the Asia
Pacific.

[15] Hengchang Hu, Wei Guo, Yong Liu, and Min-Yen Kan. 2023. Adaptive Multi-
Modalities Fusion in Sequential Recommendation Systems. In Proceedings of the
32nd ACM International Conference on Information & Knowledge Management.

[16] Hengchang Hu, Liangming Pan, Yiding Ran, and Min-Yen Kan. 2022. Modeling
and Leveraging Prerequisite Context in Recommendation. InWorkshop of Context-
Aware Recommender System (CARS’22), in conjunction with the 16th 16th ACM
Conference on Recommender Systems, RecSys.

[17] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 505–514.

[18] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[19] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus
Brubaker. 2019. Time2vec: Learning a vector representation of time. arXiv
preprint arXiv:1907.05321 (2019).

[20] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time
in knowledge graph. In Companion Proceedings of the The Web Conference 2018.
1771–1776.

[21] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 1419–1428.

[22] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen,
Yuanzhuo Wang, and Xueqi Cheng. 2021. Temporal knowledge graph reasoning
based on evolutional representation learning. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. 408–417.

[23] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artificial intelligence.

[24] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. 2019. Dy-
ing relu and initialization: Theory and numerical examples. arXiv preprint
arXiv:1903.06733 (2019).

[25] Wenjing Meng, Deqing Yang, and Yanghua Xiao. 2020. Incorporating user micro-
behaviors and item knowledge into multi-task learning for session-based rec-
ommendation. In Proceedings of the 43rd international ACM SIGIR conference on
research and development in Information Retrieval. 1091–1100.

[26] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. 2022. Contrastive
learning for representation degeneration problem in sequential recommendation.
In Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining. 813–823.

[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[28] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[29] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge graph embedding for link prediction: A comparative
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 2
(2021), 1–49.

[30] Markus Schedl. 2016. The lfm-1b dataset for music retrieval and recommendation.
In Proceedings of the 2016 ACM on international conference on multimedia retrieval.
103–110.

[31] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[32] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-end structure-aware convolutional networks for knowledge base
completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3060–3067.

[33] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems.
In Recommender systems handbook. Springer, 257–297.

[34] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[35] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[36] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[37] Chenyang Wang, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping
Ma. 2020. Toward dynamic user intention: Temporal evolutionary effects of
item relations in sequential recommendation. ACM Transactions on Information
Systems (TOIS) 39, 2 (2020), 1–33.

[38] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020.
Make it a chorus: knowledge-and time-aware item modeling for sequential rec-
ommendation. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval. 109–118.

[39] Chunyang Wang, Yanmin Zhu, Haobing Liu, Wenze Ma, Tianzi Zang, and Jiadi
Yu. 2021. Enhancing user interest modeling with knowledge-enriched itemsets
for sequential recommendation. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 1889–1898.

[40] Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, and Qi Liu. 2018.
Shine: Signed heterogeneous information network embedding for sentiment link
prediction. In Proceedings of the eleventh ACM international conference on web
search and data mining. 592–600.

[41] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM international
conference on information and knowledge management. 417–426.

[42] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
knowledge-aware network for news recommendation. In Proceedings of the 2018
world wide web conference. 1835–1844.

[43] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,
Wenjie Li, and ZhongyuanWang. 2019. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining. 968–977.

[44] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-task feature learning for knowledge graph enhanced recom-
mendation. In The world wide web conference. 2000–2010.

[45] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. In The world wide web
conference. 3307–3313.

[46] Jinpeng Wang, Ziyun Zeng, Yunxiao Wang, Yuting Wang, Xingyu Lu, Tianxiang
Li, Jun Yuan, Rui Zhang, Hai-Tao Zheng, and Shu-Tao Xia. 2023. MISSRec: Pre-
training and Transferring Multi-modal Interest-aware Sequence Representation

274

for Recommendation. In Proceedings of the 31st ACM International Conference on
Multimedia. 6548–6557.

[47] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[48] Pengfei Wang, Yu Fan, Long Xia, Wayne Xin Zhao, ShaoZhang Niu, and Jimmy
Huang. 2020. KERL: A knowledge-guided reinforcement learning model for
sequential recommendation. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval. 209–218.

[49] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining.
950–958.

[50] Ze Wang, Guangyan Lin, Huobin Tan, Qinghong Chen, and Xiyang Liu. 2020.
CKAN: collaborative knowledge-aware attentive network for recommender sys-
tems. In Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval. 219–228.

[51] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 28.

[52] Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L Hamilton. 2020.
Temp: Temporal message passing for temporal knowledge graph completion.
arXiv preprint arXiv:2010.03526 (2020).

[53] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[54] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE,
1259–1273.

[55] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of
rectified activations in convolutional network. arXiv preprint arXiv:1505.00853
(2015).

[56] Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Yazdi, and Jens Lehmann.
2020. Temporal knowledge graph completion based on time series gaussian

embedding. In International Semantic Web Conference. Springer, 654–671.
[57] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen

Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation.. In IJCAI, Vol. 19. 3940–
3946.

[58] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[59] Deqing Yang, Zikai Guo, Ziyi Wang, Juyang Jiang, Yanghua Xiao, and Wei Wang.
2018. A knowledge-enhanced deep recommendation framework incorporating
gan-based models. In 2018 IEEE International Conference on Data Mining (ICDM).
IEEE, 1368–1373.

[60] Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. 2019.
Adaptive User Modeling with Long and Short-Term Preferences for Personalized
Recommendation.. In IJCAI. 4213–4219.

[61] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[62] Rui Zhang, Bayu Distiawan Trisedya, Miao Li, Yong Jiang, and Jianzhong Qi. 2022.
A benchmark and comprehensive survey on knowledge graph entity alignment
via representation learning. The VLDB Journal 31, 5 (2022), 1143–1168.

[63] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui
Ling, and Yongdong Zhang. 2021. Causal intervention for leveraging popularity
bias in recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 11–20.

[64] Wayne Xin Zhao, Gaole He, Kunlin Yang, Hongjian Dou, Jin Huang, Siqi Ouyang,
and Ji-Rong Wen. 2019. Kb4rec: A data set for linking knowledge bases with
recommender systems. Data Intelligence 1, 2 (2019), 121–136.

[65] Yuyue Zhao, Xiang Wang, Jiawei Chen, Yashen Wang, Wei Tang, Xiangnan He,
and Haiyong Xie. 2021. Time-aware Path Reasoning on Knowledge Graph for
Recommendation. ACM Transactions on Information Systems (TOIS) (2021).

[66] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-enhanced
MLP is all you need for sequential recommendation. In Proceedings of the ACM
Web Conference 2022. 2388–2399.

275

WSDM’24, March 4-8, 2024, Merida, Mexico Hengchang Hu et al.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Temporal Knowledge Construction
	3.2 Static Pretraining on TKG
	3.3 Temporal Tuning on TKG
	3.4 Entity-level Sequential Modeling in SR
	3.5 Complexity Analysis

	4 Experiments
	4.1 Overall Recommendation accuracy
	4.2 Ablation Study
	4.3 Effectiveness of Popularity-Based Statistics
	4.4 Parameter Sensitivity

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

